Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Virus Res ; 288: 198082, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-624387

ABSTRACT

The outbreak of the 2019 novel coronavirus (SARS-CoV-2) has infected millions of people with a large number of deaths across the globe. The existing therapies are limited in dealing with SARS-CoV-2 due to the sudden appearance of the virus. Therefore, vaccines and antiviral medicines are in desperate need. We took immune-informatics approaches to identify B- and T-cell epitopes for surface glycoprotein (S), membrane glycoprotein (M) and nucleocapsid protein (N) of SARS-CoV-2, followed by estimating their antigenicity and interactions with the human leukocyte antigen (HLA) alleles. Allergenicity, toxicity, physiochemical properties analysis and stability were examined to confirm the specificity and selectivity of the epitope candidates. We identified a total of five B cell epitopes in RBD of S protein, seven MHC class-I, and 18 MHC class-II binding T-cell epitopes from S, M and N protein which showed non-allergenic, non-toxic and highly antigenic features and non-mutated in 55,179 SARS-CoV-2 virus strains until June 25, 2020. The epitopes identified here can be a potentially good candidate repertoire for vaccine development.


Subject(s)
Betacoronavirus/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , Nucleocapsid Proteins/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Viral Matrix Proteins/chemistry , Viral Vaccines/chemistry , Amino Acid Sequence , Betacoronavirus/drug effects , Binding Sites , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Coronavirus M Proteins , Coronavirus Nucleocapsid Proteins , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/metabolism , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , Humans , Immunogenicity, Vaccine , Models, Molecular , Nucleocapsid Proteins/immunology , Nucleocapsid Proteins/metabolism , Pandemics/prevention & control , Phosphoproteins , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/immunology , Viral Matrix Proteins/metabolism , Viral Vaccines/administration & dosage , Viral Vaccines/biosynthesis
2.
Microb Pathog ; 146: 104241, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-175788

ABSTRACT

The recent epidemic outbreak of a novel human coronavirus called SARS-CoV-2 and causing the respiratory tract disease COVID-19 has reached worldwide resonance and a global effort is being undertaken to characterize the molecular features and evolutionary origins of this virus. Therefore, rapid and accurate identification of pathogenic viruses plays a vital role in selecting appropriate treatments, saving people's lives and preventing epidemics. Additionally, general treatments, coronavirus-specific treatments, and antiviral treatments useful in fighting COVID-19 are addressed. This review sets out to shed light on the SARS-CoV-2 and host receptor recognition, a crucial factor for successful virus infection and taking immune-informatics approaches to identify B- and T-cell epitopes for surface glycoprotein of SARS-CoV-2. A variety of improved or new approaches also have been developed. It is anticipated that this will assist researchers and clinicians in developing better techniques for timely and effective detection of coronavirus infection. Moreover, the genomic sequence of the virus responsible for COVID-19, as well as the experimentally determined three-dimensional structure of the Main protease (Mpro) is available. The reported structure of the target Mpro was described in this review to identify potential drugs for COVID-19 using virtual high throughput screening.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/pathology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Receptors, Virus/metabolism , Angiotensin-Converting Enzyme 2 , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Nucleocapsid Proteins , Cysteine Endopeptidases/metabolism , Epitopes, T-Lymphocyte/immunology , Humans , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Protein Conformation , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL